兔子五行属什么| 沈阳有什么好玩的地方| 时机是什么意思| 右腹疼是什么原因| 吃什么对心脏好改善供血不足| 牙疼吃什么药消炎最快| 农历今天属什么生肖| 沉默寡言是什么意思| 喝白醋有什么好处| 顶格是什么意思| 王字旁的字有什么| 身上冷是什么原因| 晚上血压高是什么原因| 补体c4偏低是什么意思| 手为什么会掉皮| butter是什么意思| 芽孢是什么| 戒的部首是什么| 阴道息肉长什么样| 低压高是什么原因引起的| 为什么会得脑梗| 瓜尔佳氏现在姓什么| 喉咙痛头痛吃什么药| 黄色衣服配什么颜色裤子好看| 减肥能吃什么| 红米饭是什么米| 羊肉不能和什么食物一起吃| 因果报应是什么意思| 姐姐的老公叫什么| 宫腔回声不均匀什么原因| 血清铁蛋白是检查什么| 考试吃什么早餐| 又拉肚子又呕吐是什么原因| 白凉粉是什么原料做的| ch什么意思| 普通健康证都检查什么| 为什么叫天津卫| 女人吃芡实有什么好处| 非特异性阴道炎是什么意思| 互卦是什么意思| 取活检是什么意思| 辐照食品什么意思| 512是什么节日| 肾上腺素是什么东西| 他达拉非片是什么药| 手掌发红是什么病| 不可磨灭是什么意思| 晋五行属什么| 什么是拘役| 镜子碎了有什么征兆吗| 腋下是什么部位| 女性尿道炎挂什么科| 霉菌性阴炎用什么药好得快| 麦字五行属什么| 运动后恶心想吐是什么原因| 得了肠胃炎吃什么最好| 聊表心意是什么意思| 婴儿坐高铁需要什么证件| 95年属于什么生肖| 爱是什么歌曲| 绿松石五行属什么| 什么算高危性行为| 天麻起什么作用| 蛇头是什么意思| 黄痰吃什么药| 男性左下腹痛是什么原因| 梦见别人给我介绍对象是什么意思| hbcab阳性是什么意思| 麸皮是什么东西| 拉肚子为什么憋不住| 810是什么意思| 嘴唇有黑斑是什么原因| 朝鲜和韩国什么时候分开的| 凌晨三点醒是什么原因| 521什么星座| 黄精配什么提高性功能| 缺金的人戴什么最旺| 什么牌的笔记本电脑好| 重阳节为什么要插茱萸| 什么是功能性子宫出血| 250什么意思| 玉兰片和竹笋有什么区别| 经常吃土豆有什么好处| 李子吃多了有什么坏处| 龙胆草长什么样| 蛋白粉什么味道| 一九七一年属什么生肖| 反哺是什么意思| exo是什么意思啊| 血管变窄吃什么能改善| 喝红茶对身体有什么好处| 皮疹是什么原因引起的| 打羽毛球有什么好处| 手脚软无力是什么原因引起的| 阴道内壁是什么样的| 梦见把蛇打死了是什么意思| 溥仪和慈禧什么关系| 妆前乳是什么| 桂花乌龙茶属于什么茶| 1月27号是什么星座| 得不到的永远在骚动什么意思| 滴虫性阴炎用什么药效果最好| 睡醒口干口苦是什么原因| 中国民间为什么要吃腊八粥| 榴莲壳有什么作用| 风寒水饮是什么意思| 灻是什么意思| 三点水真读什么| 乾元是什么意思| 星五行属性是什么| 小沙弥是什么意思| 烧心吃什么药| 天蝎座和什么星座配| 老人手抖是什么病的预兆| 什么的威尼斯| 胸膜炎吃什么药| 手指甲发白是什么原因| 扶他林是什么药| 为什么当警察| pth是什么| 七月六号是什么星座| 胰腺炎吃什么食物| 血糖高的人吃什么主食| 一九六八年属什么生肖| 女人心肌缺血吃什么药| 甘油三酯高应该注意什么| 突如其来什么意思| 双鱼座的上升星座是什么| 胖子从12楼掉下来会变什么| 四维空间是什么样子| 薪字五行属什么| 徽音是什么意思| 顶到子宫是什么感觉| 吃不胖是什么原因| 结婚六十年是什么婚| 生日可以送什么礼物| 红细胞偏低是什么原因| 不知所云是什么意思| 晚上吃什么有助于睡眠| 男性婚检都检查什么项目| 浅表性胃炎吃什么药好使| 输卵管堵塞吃什么药能打通| 疡是什么意思| 接吻是什么感觉| 梦见吃杨梅是什么意思| 干什么能挣钱快| 118是什么星座| 输卵管堵塞是什么原因| 痰栓是什么| 尿频尿急吃什么药| 三氧化硫常温下是什么状态| 双肺门不大是什么意思| 靶身高是什么意思| 铜钱草能治什么病| 心肌缺血吃什么药好| 青皮是什么皮| 出虚恭是什么意思| 白骨精是什么动物| 躺平是什么意思| 嘴唇上起泡是什么原因| 6月21是什么星座| 肾动脉彩超主要查什么| 什么泡面最好吃| 什么充电宝可以带上飞机| 吃木瓜有什么作用| 鸡胗是什么| 64年的龙是什么命| 计算机二级什么时候考| 金匮肾气丸适合什么人吃| 高温丝假发是什么材质| 胆囊息肉是什么| 美帝什么意思| 农历六月十八是什么日子| 99新是什么意思| 海姆立克急救法是什么| 安陵容为什么恨甄嬛| 肌酸激酶偏低是什么原因| 黄辣丁是什么鱼| 没有白带是什么原因| 胸部里面有个圆圆的硬东西是什么| 罡什么意思| 冲猪煞东是什么意思| 梦见一个人代表什么| 念珠菌阳性是什么病| 肠胃看病挂什么科| 你说什么| 10月7号是什么星座| 猫不喜欢什么味道| 5月2号是什么星座| hcmv是什么病毒| 阳瘘的最佳治疗方法是什么| 涸的意思是什么| napoleon是什么酒| 没事找事是什么意思| 为什么不说话| 胎位 头位是什么意思| 属猴的守护神是什么菩萨| 三毛为什么自杀| 小孩感冒挂什么科| 籍贯一般填什么| 淋巴发炎吃什么药好| 泰能是什么药| 指的是什么| 梦见买床是什么意思| 低压高是什么原因造成的| wpc是什么意思| 后位子宫什么意思| 手掌发紫是什么原因| 王八看绿豆是什么意思| 什么的屏障| 甲醛闻多了有什么症状| 做果冻用什么粉| 狄仁杰为什么才三品| 拜土地公时要念什么好| 尚书相当于现在的什么官| 一直打嗝是什么原因引起的| 气管小憩室是什么意思| 遗传物质是什么| 过敏打什么针| 漏斗胸是什么原因造成的| 女性白带发黄是什么原因| 感冒流黄鼻涕吃什么药| 3月5日什么星座| 肝炎吃什么药好| 巩固是什么意思| 10月24日什么星座| 胆囊结石吃什么食物好| 前列腺是什么器官| 补脑吃什么| 老实的动物是什么生肖| 孕妇红细胞偏低是什么原因| 什么是植发| 鳞状上皮增生是什么病| 九月三号是什么日子| 象牙有什么作用与功效| 乙肝不能吃什么东西| 宝宝头大是什么原因| 犒劳自己是什么意思| xswl是什么意思| 月经量多是什么原因引起的| 液体套是什么| pro是什么氨基酸| 脑瘤到什么程度才会死| 女人什么时候是安全期| 肾主骨是什么意思| 01年属蛇的是什么命| 紫花地丁有什么功效| 八一建军节是什么节日| 肾囊肿挂什么科| 头晕看什么科| 早上7点多是什么时辰| 肾虚什么症状| 咖啡是什么| 扁桃体发炎是什么引起的| 心肌标志物是查什么的| 腰椎间盘突出不能吃什么食物| 骆驼是什么品牌| 女人要的是什么| 心肾不交是什么意思| 为什么腋下老是出汗| 3月3日是什么节| 脚气什么样| 蜂蜜加柠檬有什么功效和作用| 大放厥词是什么意思| 百度
Matt Asay
Contributing Writer

摸不到心跳是什么情况

opinion
Aug 4, 20257 mins

If you want trustworthy AI results, you need trustworthy people shaping the prompts, verifying the data, and overseeing the whole AI process.

百度 此外,外语教学与研究出版社还与施普林格自然集团签署了“中华思想文化术语研究丛书”(英文版)合作协议。

Hand drawing destroyed bridge on abstract sky background. Engineering and project concept.
Credit: Golden Dayz / Shutterstock

Software developers have never been more productive—or more anxious. The rise of generative AI models and AI coding assistants has fundamentally changed how software gets built, but there’s a catch. According to Stack Overflow’s 2025 Developer Survey, 84% of developers now use or plan to use AI in their workflow (up from 76% in 2024), but only 33% trust the accuracy of AI outputs. This trust gap reflects real-world experience with AI’s limitations. AI-generated code has a habit of being “almost right, but not quite,” as 66% of developers report. This creates a hidden productivity drain as developers spend extra time debugging and polishing AI’s code.

Nor is this just a developer’s problem. Today, building an AI-powered application might involve a cast of characters, from developers and data scientists to prompt engineers, product managers, UX designers, and more. Each plays a distinct role in bridging the trust gap that AI has opened, with developers playing a central role in orchestrating this diverse assembly line toward trustworthy, production-grade code.

Fixing code that is ‘almost right’

Why are developers souring on tools that promised to make their lives easier? The problem comes down to one word: almost. In Stack Overflow’s 2025 survey, 66% say AI output is “almost right,” and only 29% believe AI handles complex problems well (down from 35% in 2024). Skepticism is rational: A separate 2025 poll of engineering leaders found that ~60% say AI-generated code introduces bugs at least half the time, and many spend more time debugging AI output than their own. The result is a latent productivity tax: You still ship faster on balance, but only if someone is systematically catching edge cases, security pitfalls, and architectural mismatches. That “someone” is almost always a developer with the right context and guardrails.

Although software developers still write much of the code and integrate systems, their role is expanding to include AI oversight. Today’s developers might spend as much time reviewing AI-generated code as writing original code. They act as the last line of defense, ensuring that “almost right” code is made fully right before it hits production. As I’ve written before, developers now serve as supervisors, mentors, and validators for AI. In enterprise settings especially, developers are the custodians of quality and reliability, approving or rejecting AI contributions to protect the integrity of the product. Though prompt engineering made a valiant attempt to distinguish itself as a separate discipline, the reality is that many developers and data scientists are learning these skills. The Stack Overflow survey noted that 36% of respondents learned to code specifically for AI in the last year, showing how important AI-centric skills have become across the board.

The good and bad news is that this issue doesn’t merely plague developers because developers aren’t the only people who build code anymore. Here are a few other roles that may involve code:

  • Data scientists and machine learning engineers who work with the models and data that animate the code have a crucial role in building trust. A well-trained model is less likely to hallucinate or produce nonsensical outputs. These experts must ensure that models are trained on high-quality representative data and that they’re evaluated rigorously. They also implement guardrails, for example, ensuring an AI that suggests code doesn’t produce insecure patterns or known vulnerable functions.
  • Product managers and UX designers keep the big picture of any software project in mind. They decide where to apply AI and where not to, all while shaping how users interact with AI features and how much trust they invest in them. A savvy product manager will ask: “Is this AI feature truly ready for our customers? Do we need a human in the loop for quality control? How do we set user expectations?” They can also prioritize features like auditability and explainability in AI. UX designers may bolster this by using visual cues to indicate uncertainty about AI results. Great PMs and UX designers can “humanize” AI in ways that build trust by making AI a copilot, not an infallible oracle.
  • Quality assurance, security, operations teams, etc., are also essential roles in AI application development.

With so many players involved, where does this leave the classic software developer? In many ways, developers have become the orchestrators of AI-driven software projects. They stand at the intersection of all the roles mentioned. They translate the requirements of product managers into code, implement the models and guidance from data scientists, integrate the prompt tweaks from prompt engineers, and collaborate with designers on user-facing behavior. Critically, developers provide the holistic view of the system that AI lacks. A large language model might be able to spit out code in Python or Java on demand, but it doesn’t understand your system’s architecture, your specific business logic, or the quirks of your legacy stack. A developer does, and that context is everything, as I’ve highlighted.

Crucially, organizations that treat their developers as AI leaders rather than replaceable cogs are seeing benefits. Interestingly, the Stack Overflow data shows that developers who use AI more frequently tend to have better experiences; daily AI users had 88% favorability toward AI tools versus 64% for those who use them weekly. This suggests that with the right training and integration, developers can learn when to rely on AI and when to be skeptical.

Building trust in AI code

Given all the hype around AI, it’s easy to get caught up in extremes, either imagining a future where AI writes all our software flawlessly or fearing a future where nothing the AI says can be trusted. The truth, as usual, lies somewhere in between. The latest data and developer experiences tell us that AI is becoming a powerful amplifier for software development, but its success depends entirely on the people behind it.

So what does a well-run, trust-inducing AI application development process look like?

  • Build checks and balances into AI systems. If an AI suggests code, have automated tests and linting to catch obvious errors, and require a human code review for the rest. If an AI makes a recommendation in an enterprise app (say, a financial prediction), provide confidence scores or explanations, and let a human expert validate critical decisions. This mirrors the survey insight that human verification is needed, especially in roles with accountability.
  • Keep humans in the loop. This doesn’t mean rejecting automation—it means using automation to augment human expertise, not bypass it. In practice, this could be as simple as encouraging developers to use forums or colleagues to double-check AI answers, or as complex as building an AI that routes hard problems to human specialists. Either way, trust is gained when users know there’s a safety net.
  • Clarify roles and set expectations. Within teams, make it clear who is responsible for what when AI is involved. If a data scientist provides a model, maybe a software developer validates its outputs in the application context. Avoiding gaps in responsibility ensures that issues (like that sneaky “almost right” bug) are caught by someone.
  • Invest in the people behind the AI. This might be the most important factor. AI gains only materialize when you have skilled people using the AI correctly. By training developers, hiring data scientists, empowering designers, and so on, organizations build trustworthy AI by having trustworthy people at the helm.

In the end, the evolving role of the software developer in the age of AI is a guardian of trust. Developers are no longer just code writers—they’re AI copilots, guiding intelligent machines and integrating their output into reliable solutions. The definition of “developer” has broadened to include many contributors to the software creation process, but all those contributors share a common mandate: ensure the technology serves us well and doesn’t cut corners. Each role I’ve discussed, from prompt engineer to product manager, has a part in molding AI’s “almost right” answers into production-ready results.

Matt Asay

Matt Asay runs developer marketing at Oracle. Previously Asay ran developer relations at MongoDB, and before that he was a Principal at Amazon Web Services and Head of Developer Ecosystem for Adobe. Prior to Adobe, Asay held a range of roles at open source companies: VP of business development, marketing, and community at MongoDB; VP of business development at real-time analytics company Nodeable (acquired by Appcelerator); VP of business development and interim CEO at mobile HTML5 start-up Strobe (acquired by Facebook); COO at Canonical, the Ubuntu Linux company; and head of the Americas at Alfresco, a content management startup. Asay is an emeritus board member of the Open Source Initiative (OSI) and holds a JD from Stanford, where he focused on open source and other IP licensing issues. The views expressed in Matt’s posts are Matt’s, and don’t represent the views of his employer.

More from this author

枫字五行属什么 胃火重吃什么药 滞纳金是什么意思 10.16是什么星座 耳道炎用什么药最有效
低血糖什么不能吃 肺大泡是什么病 质地是什么意思 指甲黑是什么原因 人为什么会得阑尾炎
什么药止汗效果最好 经常手淫会有什么危害 失代偿期是什么意思 彩棉是什么面料 梦见磨面粉是什么意思
宠物兔吃什么 吃什么促进腺样体萎缩 女性排卵期一般在什么时候 抽筋是缺什么 芹菜可以炒什么
聚餐吃什么hcv7jop5ns5r.cn 人生有什么意义hcv9jop2ns7r.cn 午未合化什么hcv8jop7ns8r.cn 14数字代表什么意思hcv9jop6ns9r.cn 脑梗看什么科hcv9jop6ns3r.cn
全身酸痛失眠什么原因hcv9jop1ns2r.cn 谷丙转氨酶什么意思hcv9jop7ns4r.cn 眼镜框什么材质的好hlguo.com 8.2号是什么星座xinmaowt.com 大腿内侧发黑是什么原因hcv9jop5ns2r.cn
手足口吃什么药hcv8jop0ns0r.cn 营养不良会导致身体出现什么症状hcv7jop9ns5r.cn 右膝关节退行性变是什么意思hcv9jop3ns2r.cn 黄脸婆是什么意思hcv9jop0ns6r.cn 夏天适合种什么植物hcv8jop3ns4r.cn
缺钾吃什么sanhestory.com 强痛定又叫什么hcv9jop4ns2r.cn 子痫是什么意思dayuxmw.com 9月份什么星座zhiyanzhang.com 商业保险报销需要什么材料hcv9jop5ns8r.cn
百度